Rumus Radioaktif
Peluruhan radioaktif adalah kumpulan beragam proses di mana sebuah inti atom yang tidak stabil memancarkan partikel subatomik (partikel radiasi). Peluruhan terjadi pada sebuah nukleus induk dan menghasilkan sebuah nukleus anak. Ini adalah sebuah proses “acak” (random) sehingga sulit untuk memprediksi peluruhan sebuah atom. Satuan internasional (SI) untuk pengukuran peluruhan radioaktif adalah becquerel (Bq). Berikut adlah rumus radioaktif.
Sinar-sinar Radioaktif
- Sinar Alfa (sinar α)
- Sinar Beta (sinar β)
- Sinar Gamma (sinar γ)
Rumus Intensitas Sinar Radioaktif
Keterangan :
- = intensitas sinar radioaktif sesudah melewati keping
- = intensitas sinar radioaktif sebelum melewati keping
- = bilangan natural
- = koefisien pelemahan
- = tebal keping
Rumus Peluruhan Radioaktif
Keterangan :
- = jumlah inti yang belum meluruh
- = jumlah inti mula-mula
- = bilangan natural
- = konstanta peluruhan (s^{-1})
- = waktu peluruhan (s)
Laju peluruhan radioaktif
Laju peluruhan, atau aktivitas, dari material radioaktif ditentukan oleh:
Konstanta:
-
- Waktu paruh – simbol – waktu yang diperlukan sebuah material radioaktif untuk meluruh menjadi setengah bagian dari sebelumnya.
- Rerata waktu hidup – simbol – rerata waktu hidup (umur hidup) sebuah material radioaktif.
- Konstanta peluruhan – simbol – konstanta peluruhan berbanding terbalik dengan waktu hidup (umur hidup).
Variabel:
-
- Aktivitas total – simbol – jumlah peluruhan tiap detik.
- Aktivitas khusus – simbol – jumlah peluruhan tiap detik per jumlah substansi. “Jumlah substansi” dapat berupa satuan massa atau volume.)
Persamaan:
-
-
- dimana
- adalah jumlah awal material aktif.
- dimana
-
Pengukuran aktivitas
Satuan aktivitas adalah: becquerel (simbol Bq) = jumah disintegrasi (pelepasan)per detik ; curie (Ci) = {\displaystyle 3.7\times 10^{10}\ } disintegrasi per detik; dan disintegrasi per menit (dpm).
Waktu peluruhan
Sebagaimana yang disampaikan di atas, peluruhan dari inti tidak stabil merupakan proses acak dan tidak mungkin untuk memperkirakan kapan sebuah atom tertentu akan meluruh, melainkan ia dapat meluruh sewaktu waktu. Karenanya, untuk sebuah sampel radioisotop tertentu, jumlah kejadian peluruhan –dN yang akan terjadi pada selang (interval) waktu dt adalah sebanding dengan jumlah atom yang ada sekarang. Jika N adalah jumlah atom, maka kemungkinan (probabilitas) peluruhan (– dN/N) sebanding dengan dt:
Masing-masing inti radioaktif meluruh dengan laju yang berbeda, masing-masing mempunyai konstanta peluruhan sendiri (λ). Tanda negatif pada persamaan menunjukkan bahwa jumlah N berkurang seiring dengan peluruhan. Penyelesaian dari persamaan diferensial orde 1 ini adalah fungsi berikut:
Fungsi di atas menggambarkan peluruhan exponensial, yang merupakan penyelesaian pendekatan atas dasar dua alasan. Pertama, fungsi exponensial merupakan fungsi berlanjut, tetapi kuantitas fisik N hanya dapat bernilai bilangan bulat positif. Alasan kedua, karena persamaan ini penggambaran dari sebuah proses acak, hanya benar secara statistik. Akan tetapi juga, dalam banyak kasus, nilai N sangat besar sehingga fungsi ini merupakan pendekatan yang baik.
Selain konstanta peluruhan, peluruhan radioaktif sebuah material biasanya juga dicirikan oleh rerata waktu hidup. Masing-masing atom “hidup” untuk batas waktu tertentu sebelum ia meluruh, dan rerata waktu hidup adalah rerata aritmetika dari keseluruhan waktu hidup atom-atom material tersebut. Rerata waktu hidup disimbolkan dengan {\displaystyle \tau }, dan mempunyai hubungan dengan konstanta peluruhan sebagai berikut:
Parameter yang lebih biasa digunakan adalah waktu paruh. Waktu paruh adalah waktu yang diperlukan sebuah inti radioatif untuk meluruh menjadi separuh bagian dari sebelumnya. Hubungan waktu paruh dengan konstanta peluruhan adalah sebagai berikut:
Hubungan waktu paruh dengan konstanta peluruhan menunjukkan bahwa material dengan tingkat radioaktif yang tinggi akan cepat habis, sedang materi dengan tingkat radiasi rendah akan lama habisnya. Waktu paruh inti radioaktif sangat bervariasi, dari mulai 1024 tahun untuk inti hampir stabil, sampai 10-6 detik untuk yang sangat tidak stabil.
Mode Peluruhan
Sebuah inti radioaktif dapat melakukan sejumlah reaksi peluruhan yang berbeda. Reaksi-reaksi tersebut disarikan dalam tabel berikut ini. Sebuah inti atom dengan muatan (nomor atom) Zdan berat atom A ditampilkan dengan (A, Z).
Mode peluruhan | Partikel yang terlibat | Inti anak |
---|---|---|
Peluruhan dengan emisi nukleon: | ||
Peluruhan alfa | Sebuah partikel alfa (A=4, Z=2) dipancarkan dari inti | (A-4, Z-2) |
Emisi proton | Sebuah proton dilepaskan dari inti | (A-1, Z-1) |
Emisi neutron | Sebuah neutron dilepaskan dari inti | (A-1, Z) |
Fisi spontan | Sebuah inti terpecah menjadi dua atau lebih atom dengan inti yang lebih kecil disertai dengan pemancaran partikel lainnya | – |
Peluruhan cluster | Inti atom memancarkan inti lain yang lebih kecil tertentu (A1, Z1) yang lebih besar daripada partikel alfa | (A–A1, Z–Z1) + (A1,Z1) |
Berbagai peluruhan beta: | ||
Peluruhan beta | Sebuah inti memancarkanelektron dan sebuah antineutrino || (A, Z+1) | |
Emisi positron | Sebuah inti memancarkan positron dan sebuah neutrino | (A, Z-1) |
Tangkapan elektron | Sebuah inti menangkap elektron yang mengorbit dan memancarkan sebuah neutrino | (A, Z-1) |
Peluruhan beta ganda | Sebuah inti memancarkan dua elektron dan dua antineutrinos | (A, Z+2) |
Tangkapan elektron ganda | Sebuah inti menyerap dua elektron yang mengorbit dan memancarkan dua neutrino | (A, Z-2) |
Tangkapan elektron dengan emisi positron | Sebuah inti menangkap satu elektron yang mengorbit memancarkan satu positron dan dua neutrino | (A, Z-2) |
Emisi positron ganda | Sebuah inti memancarkan dua positrons dan dua neutrino | (A, Z-2) |
Transisi antar dua keadaan pada inti yang sama: | ||
Peluruhan gamma | Sebuah inti yang tereksitasi melepaskan sebuah foton energi tinggi (sinar gamma) | (A, Z) |
Konversi internal | Inti yang tereksitasi mengirim energinya pada sebuah elektron orbital dan melepaskannya | (A, Z) |
Peluruhan radioaktif berakibat pada pengurangan massa, di mana menurut hukum relativitas khusus massa yang hilang diubah menjadi energi (pelepasan energi) sesuai dengan persamaan . Energi ini dilepaskan dalam bentuk energi kinetik dari partikel yang dipancarkan.
Contoh Soal dan Jawaban Rumus Radioaktif
1. Massa inti atom 20Ca40 adalah 40,078 sma. Jika massa proton = 1,0078 sma dan neutron = 1,0087 sma, defek massa pembentukan 20Ca40adalah…
A. 0,165 sma
B. 0,252 sma
C. 0,262 sma
D. 0,320 sma
E. 0,330 sma
Pembahasan:
Diketahui:
Z = 20
A = 40
N = A – Z = 40 – 20 = 20
mi = 40,078 sma
mP = 1,0078 sma
mN = 1,0087
Ditanya: Δm = …
Jawab:Δm = [(Z . mP + N . mN) – mi]
Δm = [(20 . 1,0078 + 20 . 1,0087) – 40,078]
Δm = (20,156 + 20,174) – 40,078
Δm = 40,33 – 40,078 = 0,252 sma
Jawaban: B
2. Perhatikan reaksi fusi berikut: 1H2 + 1H2 → 1H3+ 1H1 + energi
Jika massa inti 1H2 = 2,0141 sma, 1H3 = 3,0160 sma dan 1H1 = 1,0078 sma, maka energi yang dihasilkan pada reaksi fusi tersebut adalah…
A. 5,0964 MeV
B. 5,0443 MeV
C. 4,0964 MeV
D. 4,0878 MeV
E. 4,0778 MeV
Pembahasan
E = (m 1H2 + m 1H2 ) – (m 1H3 + m 1H1 ) 931 MeV
E = (2,0141 + 2,0141) – (3,0160 + 1,0078) 931 MeV
E = (4,0282 – 4,0238) 931 MeV
E = 4,0964 MeV
Jawaban: C
3. Massa inti 4Be9 = 9,0121 sma, massa proton = 1,0078, massa neutron = 1,0086 sma. Jika 1 sma setara dengan energi sebesar 931 Mev, maka energi ikat atom 4Be9 adalah…
A. 51,39 MeV
B. 57,82 MeV
C. 62,10 MeV
D. 90,12 MeV
E. 90,74 MeV
Pembahasan
Energi ikat:
E = ((mp + mn) – mi) . 931 MeV
E = ((4 . 1,0078 + 5 . 1,0086) – 9,0121) 931 MeV
E = (4,0312 + 5,043) – 9,0121) 931 MeV
E = 57,82 MeV
Jawaban: B
4. Apabila massa inti 6C12 = 12, massa proton = 1,00783 sma, dan massa neutron = 1,008665 sma (1 sma = 931 MeV), maka energi ikat inti tersebut adalah…
A. 41,107 MeV
B. 47,110 MeV
C. 72,141 MeV
D. 92,141 MeV
E. 107,92 MeV
Pembahasan:
Diketahui:
mP = 1,00783 sma
mN = 1,008665 sma
m 6C12 = 12 sma
Ditanya: E = …
Terlebih dahulu hitung Δm.
Δm = [(Z . mP + N . mN) – mi]
Δm = [(6 . 1,00783 + 6 . 1,008665) – 12]
Δm = (6,04698 + 6,05199) – 12
Δm = 12,09897– 12 = 0,09897 sma
Menghitung E.
E = Δm . 931 MeV = 0,09897 . 931 MeV
E = 92,141 MeV
Jawaban: D
5. Pernyataan-pernyataan berikut ini:
1) Terapi radiasi
2) Mengukur kandungan air tanah
3) Sebagai perunut
4) Menentukan umur fosil
Yang merupakan pemanfaatan radioisotop dibidang kesehatan adalah…
A. 1, 2, 3, dan 4
B. 1, 2, dan 3
C. 1 dan 3
D. 2 dan 4
E. 4 saja
Jawaban: C
Rumus Fisika Lainnya
Fisika banyak diisi dengan persamaan dan rumus fisika yang berhubungan dengan gerakan sudut, mesin Carnot, cairan, gaya, momen inersia, gerak linier, gerak harmonik sederhana, termodinamika dan kerja dan energi. Klik disini untuk melihat rumus fisika lainnya (akan membuka layar baru, tanpa meninggalkan layar ini).
Bacaan Lainnya
- Tabel Isotop Lengkap – Disusun dengan meningkatnya nomor atom
- Bagaimana Albert Einstein mendapatkan rumus E=mc² ?
- Cara Mengemudi Aman Pada Saat Mudik atau Liburan Panjang
- Jenis Virus Komputer – Cara Gratis Mengatasi Dengan Windows Defender
- Cara Menghentikan Penindasan Bullying
- Cara menjaga keluarga Anda aman dari teroris – Ahli anti-teror menerbitkan panduan praktis
- Apakah Anda Memerlukan Asuransi Jiwa? – Cara Memilih Asuransi Jiwa Untuk Pembeli Yang Pintar
- Ibu Hamil Dan Bahaya Kafein – Sayur & Buah Yang Baik Pada Masa Kehamilan
- Daftar Jenis Kanker: Pemahaman Kanker, Mengenal Dasar-Dasar, Contoh Kanker, Bentuk, Klasifikasi, Sel dan Pemahaman Penyakit Kanker Lebih Jelas
- Penyebab Dan Cara Mengatasi Iritasi Atau Lecet Akibat Pembalut Wanita
- Apakah Produk Pembalut Wanita Aman?
- Sistem Reproduksi Manusia, Hewan dan Tumbuhan
- Cara Mengenal Karakter Orang Dari 5 Pertanyaan Berikut Ini
- Kepalan Tangan Menandakan Karakter Anda & Kepalan nomer berapa yang Anda miliki?
Unduh / Download Aplikasi HP Pinter Pandai
Respons “Ooo begitu ya…” akan lebih sering terdengar jika Anda mengunduh aplikasi kita!
Siapa bilang mau pintar harus bayar? Aplikasi Ilmu pengetahuan dan informasi yang membuat Anda menjadi lebih smart!
Sumber bacaan: Physics, Tutor Vista, Study
Pinter Pandai “Bersama-Sama Berbagi Ilmu”
Quiz | Matematika | IPA | Geografi & Sejarah | Info Unik | Lainnya